10 Tuloksia löytyi "Tiedosto:Critical_orbit_for_f(z)_=_z^14_-_z.png".

Tiedosto:Critical orbit for f(z) = z^14 - z.png

telefonica.net/web2/biomates */ draw2d( title = "All critical orbits for f(z)=z^14 -z ", terminal = png, user_preamble = "set angles degrees; set grid polar...


Tiedosto:Critical orbit for f(z) = z^15 - z.png

net/web2/biomates */ draw2d( title = "All orbits of 14 critical points for f(z)=z^15 -z ", terminal = png, file_name = concat("~/",string(iLength),"b")...


Tiedosto:Parabolic critical orbit for internal angle one fifth.png

block( [z,orbit], z:0, /* first point = critical point z:0+0*%i */ orbit:[z], for i:1 thru iMax step 1 do ( z:expand(f(z,c)), orbit:endcons(z,orbit)), return(orbit)...


Tiedosto:Dynamical plane with branched periodic external ray 0 for map f(z) = z*z + 0.35.png

points): r0: external ray 0 goes from (+) infinity along critical orbit towards critical point z=0 ( horizontal segment). Here bifurcates. segment r1 has...


Tiedosto:Fatou sets for Blaschke fraction f(z) = rho * z^2 * (z-3) over (1-3z) with LCM and critical orbit.png

plane with Julia set for Blaschke fraction f(z) = rho * z^2 * (z-3)/(1-3z) MBD_LCM andl LCM only for parabolic basin and critical orbit of parabolic basin...


Tiedosto:Dynamical plane with branched periodic external ray 0 for map f(z) = z*z + 0.35.svg

points): r0: external ray 0 goes from (+) infinity along critical orbit towards critical point z=0 ( horizontal segment). Here bifurcates. segment r1 has...


Tiedosto:Julia set for f(z)=1 over (z3+a*z+ b) with a = 2.099609375 and b = 0.349609375 with critical orbits.png

rational-function English Julia set for f(z)=1 over (z3+a*z+ b) with a = 2.099609375 and b = 0.349609375 with critical orbits author name string: Adam majewski...


Tiedosto:Julia set for f(z) = z*z -0.6978381951224250+0.2793041341013660 ( components and attracting cycle).png

p_size, A); /* forward orbit of critical point */ for (i=1;i<i_Max ; ++i) { z = f(z); //if (cabs2(z - zp) < AR2) {break;} // if (cabs2(z - zp) < PixelWidth2)...


Tiedosto:Fatou sets for Blaschke fraction f(z) = rho * z^2 * (z-3) over (1-3z).png

plane with Julia set for Blaschke fraction f(z) = rho * z^2 * (z-3)/(1-3z) LCM for all 3 basins and critical orbit of parabolic basin File basins.pgm saved...


Tiedosto:Julia set f(z)=1 over z3+z*(-3-3*I).png

complex double z = z0; printf("draw forward orbit \n"); PlotBigPoint(z, A); /* forward orbit of critical point */ for (i=1;i<iMax ; ++i) { z = f(z); fprintf...